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Superluminal localized solutions to Maxwell equations propagating along a waveguide:
The finite-energy case
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In a previous paper we have shown localized~nonevanescent! solutions to Maxwell equations to exist, which
propagate without distortion with superluminal speed along normal-sized waveguides, and consist in trains of
‘‘X-shaped’’ beams. Those solutions possessed infinite energy. In this paper we show how to obtain, by
contrast,finite-energy solutions, with the same localization and superluminality properties.
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I. INTRODUCTION: LOCALIZED SOLUTIONS
TO THE WAVE EQUATION

As early as 1915 Bateman@1# showed that the Maxwel
equations admit~besides the ordinary solutions endowed
vacuum with speedc) wavelet-type solutions, endowed i
vacuum with group-velocities 0<v<c. But Bateman’s work
went practically unnoticed. Only a few authors, such
Barut et al. @2#, followed such a research line; incidentall
Barut et al. constructed even a wavelet-type solution trav
ing with superluminal group velocity@3# v.c.

In more recent times, however, many authors discus
the fact that all~homogeneous! wave equations admit solu
tions with 0,v,`: see, e.g., Ref.@4#. Most of those authors
confined themselves to investigating~subluminal or superlu-
minal! localizednondispersive solutions in vacuum; name
those solutions that were called ‘‘undistorted progress
waves’’ by Courant and Hilbert. Among localized solution
the most interesting appeared to be the so-called ‘‘X-shap
waves, which—predicted to exist even by special relativ
in its extended version@5#—had been mathematically con
structed by Lu and Greenleaf@6# for acoustic waves, and b
Ziolkowski et al. @6#, and later Recami@6#, for electromag-
netism. Let us recall that such X-shaped localized soluti
are superluminal~i.e., travel with a group-velocityv.c in
the vacuum! in the electromagnetic case; and are ‘‘sup
sonic’’ ~i.e., travel with a speed larger than the sound sp
in the medium! in the acoustic case. The first authors
produce X-shaped wavesexperimentallywere Lu and Green-
leaf @7# for acoustics, Saariet al. @7# for optics, and Mugnai
et al. for microwaves@7#.

In a recent paper of ours, which appeared in this jour
@8#, we showed that solutions to the Maxwell equations ex
that displace themselves with superluminal group veloc
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even along a normal waveguide, where one ordinarily
pects to meet propagating, subluminal modes only. Actua
a segment of ‘‘undersized’’ waveguide constitutes an evan
cence region@9#, and evanescent waves are known to tra
superluminally@5,9–11#; however, it was rather unexpecte
that ~localized! waves could propagate superluminally dow
a normal-sized waveguide. In fact, the dispersion relation
undersized guides isv2/c22b252K2, so that the standard
formula v.dv/db yields a v.c group velocity @12#; by
contrast, in normal guides the dispersion relation becom
v2/c22b251K2, so that it seems to yield valuesv,c
only. Instead, in our paper@8# we have shown that localize
solutions to the Maxwell equations do exist, propagat
with v.c even in normal waveguides; but their grou
velocity v cannot be given by the approximate formulav
.dv/db. ~Let us recall that the group velocity is well de
fined only when the pulse has a clear bump in space; bu
can be calculated by the approximate, elementary rela
v.dv/db only whenv as a function ofb is also clearly
bumped.!

II. THE INFINITE-ENERGY SOLUTIONS

In Ref. @8# we construced localized solutions to the Ma
well equations~which propagate undistorted, with superl
minal group velocity down acylindrical waveguide located
along thez direction! for the TM ~transverse magnetic! case
and for a dispersion-free medium. The case with dispers
has been treated elsewhere@13#, as well as the case of
coaxial cable@14#. Here, let us call attention to two points
which received just a mention in Ref.@8#, with regard to Eq.
~9! and Fig. 2 therein:~i! those solutions consist oftrains of
pulses~similar to the one depicted in Fig. 2 of Ref.@1#!; ~ii !
each of such pulses is X-shaped, see our Fig. 1 below. Let us
note, incidentally, that we are referring to the electroma
netic case, but the same would hold for all situations
which a fundamental role is played by the wave equation~as
©2003 The American Physical Society20-1
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in acoustics, geophysics, gravitational waves, elemen
particle physics, etc.!.

In the case of cylindrical symmetry, let us consider a m
tallic waveguide@8# with radius r, and use the notationsr
[(x,y), and r5uru, as well as the boundary conditio
C(r5r ,z;t)50. In the previous paper@8# we constructed
the axisymmetric solution

C~r,z;t !5 (
n51

N S 2

r 2sin2uJ1
2~ln! D J0~Knr!cosFvn

V
~z2V t!G ,

~1!

FIG. 1. This figure depicts one of our~infinite total-energy!
localized solutions, given in Eq.~1!. It consists, as expected, in
train of X-shaped waves; and propagates rigidly along the con
ered circular, normal-sized waveguide, with radiusr 55 cm, with
the superluminal speedV5c/cosu. @Let us recall that any solution
that depends onz ~and t) only through the variablez[z2Vt is
rigidly moving with speedV.] In this figureu5p/3 has been cho-
sen, whilez[z2Vt. At last, we have adoptedN522, that is, the
same value ofN used by us in Ref.@8# ~cf., for instance, Fig. 3
therein!.

FIG. 2. Dispersion curves for the symmetrical TM0l modes in a
perfect cyclindrical waveguide, and location of the frequenc
whose corresponding modes have equal phase velocity. See the
03662
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whereC represents the longitudinal component of the el
tric field Ez , while N is an integer, the quantitiesln are the
roots of the Bessel function,Kn5ln /r and vn5Knc/sinu,
while V5c/cosu. These solutions are therefore Fourie
Bessel–type sums over different propagating modes with
gular frequenciesvn .

Let us recall the obvious circumstance that any solut
that depends onz ~and t) only through the variablez[z
2Vt will be ‘‘rigidly’’ moving with speed V.

One can moreover notice that, in Eq.~1!, the quantityu is
an arbitrary angle: by varying it, one obtains different tra
speeds and a different distance between the pulses. Actu
our solutions propagate rigidly along the guide with~super-
luminal! group velocityV5c/cosu. In Fig. 1, we depict one
of the trains of X-shaped waves, obtained by numeri
evaluation of Eq.~1! for a waveguide radiusr 55 cm, with
u5p/3 ~and, therefore, group-velocityV52 c). It is inter-
esting to mention also that the integerN determines the
space-time width of the pulses: the higher theN is, the
smaller the pulse ‘‘spatiotemporal’’ width will be. Figure
has been obtained by choosingN522, that is, by using the
same value ofN adopted by us in Ref.@8# ~cf., for instance,
Fig. 3 therein!.

Let us emphasize that Eq.~1! represents amultimodal~but
localized! propagation, as if the geometric dispersion co
pensated for the multimodal dispersion.

We mentioned thatC represents the electric field compo
nentEz . Let us add that, by following the procedure adopt
by us in Ref.@8#, the other eletromagnetic field componen
in the considered TM case can be written as

E'5 i
cV

V22c2 (
n51

`
c

vn
“'C, ~2!

where

cV

V22c2 [
cosu

sin2u
,

and

H'5«0V ẑ3E' . ~3!

Equation~1! allows for a physical interpretation, whic
suggests a very simple way to get it. Each pulse train i
sum of the firstN modes of our expansion~and for eachN
we get a different train, at our choice!, whose frequencies
have been suitably chosen as corresponding to theintersec-
tions of the modal curves~i.e., the various branches of th
dispersion-relation! with the single straight line v5V b
whose slope depends onu only; see Fig. 2. In such a case, a
the modes correspond to the same~superluminal! phase-
velocity Vph, it being independent of the mode indexn; but,
when the phase velocity is independent of the frequenc
becomes thegroup velocity, which is the velocitytout court
of the considered pulse. Let us repeat once more that we
got ~nonevanescent! solutions to the Maxwell equations
which are waves propagating undistorted along norm
waveguides with superluminal group velocity,even if in
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FIG. 3. This set of eight fig-
ures depicts one of ourfinite total-
energy localized solutions, given
by Eqs.~5! and ~8!. Indeed, they
show the time evolution of a finite
total-energy solution: Choosingq
52.041310210 and u5p/3 ~and
normalized units!, there is only
one X-shaped pulse inside the
subluminal envelope: see the tex
The pulse and envelope; velocitie
are given byV5c/cosu and vg

5c2/V, respectively. The~global!
speedv of the envelope is there
fore subluminal in the finite-
energy case, while superlumina
speedsV are met onlylocally ~in-
ternally!. Nevertheless, in the
present case the superlumin
speed V5c2/vg of such a
‘‘single’’ pulse might be regarded
as the actual velocity of the wave
~a!–~h! show a complete cycle o
the pulse; the first set of four fig
ures corresponds to the tim
instants t50, t55, t510,
t515310211 s, respectively,
while the ~symmetrical! second
set of four figures corresponds t
the time instantst525, t530, t
535, t540310211 s, respec-
tively. Quantityr is the radial co-
ordinate, while z[z2Vt. We
have used, once more, the valu
N522.
ac
,

ion
nal
y is
normal-sized waveguides the dispersion relation for e
mode, i.e., for each term of our Fourier-Bessel expansion
the ordinary ‘‘subluminal’’ one,v2/c22b251K2. Let us
repeat that theglobal velocity v ~or group-velocityvg[v) of
the pulses corresponding to Eq.~1! is not to be evaluated by
the ordinary formulavg.dv/db, valid for quasimonochro-
03662
h
is
matic signals. This is at variance with the common situat
in optical and microwave communications, when the sig
is usually superimposed to a carrier wave whose frequenc
generally much higher than the signal bandwidth. Inthat
case the standard formula forvg yields the correct velocity to
deal with ~e.g., when propagation delays are studied!. Our
0-3
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case, on the contrary, is much more reminiscent of a b
band modulated signal, as those studied in ultrasonics:
very concept of a carrier becomes meaningless here, a
elementary ‘‘harmonic’’ components have widely differe
frequencies.

The fact that our superluminal trains travel rigidly, dow
the waveguide~i.e., with a spatial limitation only!, is at vari-
ance with what happens to other~superluminal! solutions
@15,7#, which are truncated in time: the latter travel almo
rigidly only along their finite ‘‘field depth,’’ and then
abruptly decay.

Finally, it may be underscored that the coefficients in E
~1! can be varied so as to keep the pulse spectrum inside
desired frequency range. This point will be discussed ag
soon.

III. THE FINITE-ENERGY SOLUTIONS

In this paper, we have called attention to the fact t
solutions~1! are infinite trains of pulses, withinfinity energy.
This is not a real problem~plane waves too have infinit
energy!, provided that we are able to truncate them in sp
and time withount destroying their good properties. We sh
go on following the previous assumptions: what we are
ing to do holds, however, for both the TM and the TE ca
Let us anticipate that, in order to get finite total-energy so
lutions ~FTESs!, we shall have to replace each characteris
frequencyvn @cf. Eq. ~1!, or Fig. 2# by a small frequency
band Dv centered atvn , always choosing the sameDv
independently ofn. In fact, since all the modes entering th
Fourier-type expansion~1! possess the same phase veloc
Vph[V5c/cosu, each small bandwidth packet associat
with vn will possessthe same group velocityvg5c2/Vph, so
that we shall have as a result a wave whoseenvelopetravels
with thesubluminalgroup velocityvg . However, inside that
subluminal envelope, one or morepulseswill be traveling
with the dual ~superluminal! speedV5c2/vg . Such well-
localized peaks will have nothing to do with the ordina
~sinusoidal! carrier wave, and will be regarded as constit
ing the relevant wave. When integrating each term of exp
sion ~1! over its corresponding frequency band, one m
choose, e.g., Gaussiam spectra.

Before going on, let us mention that previous work rela
to FTESs can be found—as far as we know—only in Re
@16,14,17#.

More formally, let us consider our ordinary solutions for
metallic waveguide, written in the form

cn~r,z;t !5AnRn~r!cos@b~v!z2vt#,

where coefficientsAn and functionsRn are given by the co-
efficients and the~transverse! functions entering Eq.~1!;
namely,

An5
2

r 2sin2uJ1
2~ln!

, Rn~r!5J0~Knr!, Kn5
ln

r
.

Then, let us adopt the spectral functions

Wn[exp@2q2~v2vn!2#, ~4!
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where the weight parameterq is always the same, so thatDv
too is independent ofn @in fact, it is Dv52/q], and where

vn[
Knc

sinu
,

the quantity sinu having a fixed but otherwise arbitrar
value. Notice that the last relation implies the wave numb
bn of the longitudinal waves to be given, in terms of th
correspondingvn , by bn5vncosu/c. We can construct FT-
ESs,F(r,z;t), of the type1

F~r,z;t !5 (
n51

N E
2`

`

dv cnWn ~5!

with arbitraryN. Notice that we are not using a single Gaus
ian weight, but a different Gaussian functionWn for eachvn
value. Such weightsWn are well localized around the corre
spondingvn , so that one can expand~for each value ofn, in
the above sum! the functionb(v) in the neighborhood of the
correspondingvn value as follows:

b~v!.b~vn!1
]b

]v
uvn

~v2vn!1•••, ~6!

whereb(vn)5vncosu/c, and the further terms are neglecte
@since, let us repeat,Dv/v has been assumed to be sma#.
Therefore, we are now facing no longer a set of phase
locities, but the set of group velocities

1

vgn
5

]b

]vU
vn

,

which result to beindependentof n, all of them possessing
therefore the same value

vgn[vg5c cosu. ~7!

By performing the integration in Eq.~5!, we eventually ob-
tain

F~r,z;t !5
Ap

q
expF2

~z2vgt !
2

4q2vg
2 GC~r,z2Vt!, ~8!

whereC(r,z2Vt) is any pulse train given by Eq.~1!; and
we had recourse to the identity

1When integrating overv from 2` to 1`, also the nonphysica
~noncausal! components that travel backwards in space could c
tribute @17,14#. But their actual contribution is totally negligible
since the weight functionsWn are strongly localized in the vicinity
of the vn values~which are all positive; see, e.g., Fig. 2!. In any
case, one could integrate from 0 tòat the price of increasing a
little the mathematical complexity: we are preferring the pres
formalism for simplicity’s sake.
0-4
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E
2`

`

d f exp@2q2f 2#cos@ f ~z2vgt !/vg#

5
Ap

q
expF2

~z2vgt !
2

4q2vg
2 G .

It is rather interesting that our FTESs are related to
X-shaped waves, since Eq.~5! has been written in the form
~8!, where the functionC(r,z2Vt) is any one of our previ-
ous solutions in Eq.~1! above, at our choice.

Let us notice that our finite-energy solutions, Eqs.~5! and
~8!, have got a finite depth of field,Z. To evaluateZ, one has
to consider also the second-order term in the Taylor exp
sion, Eq.~6!, of quantity b(v), and then estimate the dis
tance after which the solutions start deforming. The relev
calculations appear in the Appendix. One finds that

Z'
2A3 q2

b21
, ~9!

where

b21[
]2b

]v2 U
v1

5
tan2u

v1 vg
.

IV. CONCLUSIONS

In conclusion, looking forfinite total-energy solutions, we
have found a Gaussian envelope that travels with asublumi-
nal velocity v5c cosu. However, inside it, we have got
train of pulses traveling superluminally~with V5c2/v
5c/cosu). And we can control the number of pulses insi
the envelope just by varying the value ofq.

We have actually shown that, if we choose thevn values
as in Fig. 2, all the small-bandwidth packets centered at
vn’s will have the same phase velocityV.c, and therefore
the same group velocityvg,c ~since for metallic
waveguides the quantitiesKn

25vn
2/c22b2 are constant for

each mode, andvg[]v/]b, so that it isV vg5c2). This
means that the envelope of solution~5!–~8! moves with
slower-than-light speed, the envelope length2 D, depending
on the chosenDv, and being therefore proportional toqvg .
However, inside such an envelope, one has a train of~X-
shaped! pulses—having nothing to do with the ordinary ca
rier wave,3—traveling with the superluminal speedV.

According to the standard theory of waveguides@18#, the
energy and signal propagation velocities coincide with
group velocity ~i.e., with the envelope speed!, which has
been seen to be subluminal. From this point of view—eve
a lively debate is still in progress@19#, in connection with the
rather delicate and general questions just mentioned—
particular problem is met, therefore, with our finite-ener

2One may call ‘‘envelope length’’ the distance between the t
points at which the envelope height is, for instance, 10% of
maximum height.

3Actually, they can be regarded as a sum of carrier waves.
03662
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solutions. An interesting point is that we can choose, ho
ever, the envelope length so that it containsonly one ~X-
shaped wave! peak. Even if the~global! speed of the enve
lope is subluminal in the finite-energy case, wh
superluminal speeds are met only ‘‘internally,’’ neverthele
in the present case the superluminal speedV5c2/vg of such
a ‘‘single’’ pulse might be regarded as the actuallocal veloc-
ity of the wave. In order to have just one peak inside t
envelope, the envelope length is to be chosen smaller
the distance between two successive peaks of the~infinite
total-energy! train ~1!.

The amplitude of such a single X-shaped pulse~which
remains confined inside the envelope boundary! first in-
creases, and afterwards decreases, while traveling, till w
it practically disappears. As soon as the considered p
vanishes on the right~i.e., under the right tail of the enve
lope!, a second pulse starts to be created on the left, an
on @from Eq. ~8! it is clear, in fact, that our finite-energ
solutions are nothing but an~infinite-energy! solution of the
type in Eq.~1!, multiplied by a Gaussian function#.

We illustrate such behavior~again withN522) in Fig. 3,
namely, in the set of eight figures from Fig. 3~a! to Fig. 3~h!.
We have found a similar behavior in Ref.@13#, and depicted
it in the last set of figures of that reference, when study
the case of a coaxial guide.

Let us moreover remark that similar considerations co
be extended to all the situations where a waveguide supp
several modes. Tests at microwave frequencies, for insta
should be rather easy to perform; by contrast, experiment
the optical domain are made difficult, at present, by the li
ited extension of the spectral windows corresponding to
too large attenuations. We shall discuss this point elsewh

It is rather interesting that our FTESs are related to
X-shaped waves, since in Eq.~8! the functionC(r,z2Vt)
can be any one of our previous solutions in Eq.~1! above, at
our choice.

Let us finally recall that such superluminal beams—ev
in the case of ~infinite-energy! trains of undistorted
pulses—donot imply causality problems, both in principle
@5,12#, and in consideration of the important fact that a
Bessel beams, and superpositions of them, are generate
interference among ordinary (c-speed! waves, so as to be
apparently uncapable of carrying superluminal informat
@15#—even if some debate is still in progress on this po
too. Even more, the finite-energy solutions are obtained, g
erally speaking, by truncating in time the mentioned loc
ized waves; the finite-energy solutions, therefore, keep lo
ized only along a finite depth of field: namely, as long as th
are fed by the incoming, interfering~ordinary! waves. It is
not without meaning, actually, that all the solutions gotten
this paper, as well as in previous papers, have been obta
on the basis of the Maxwell equations~or of the wave equa-
tion! only, and can do nothing but comply with the fund
mental postulates of special relativity@5,12#.
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APPENDIX

Estimating the field depth of the finite-energy solutions

As announced at the end of Sec. III, we show in t
appendix how to evaluate the field depth of our finite-ene
solutions. Let us add the second-order term in Eq.~6!, which
is the Taylor expansion~for each value ofn) of function
b(v) in the neighborhood of the correspondingvn ,

b~v!.b~vn!1
]b

]v Uvn
~v2vn!1

1

2

]2b

]v2U
vn

~v2vn!2

1•••, ~A1!

where it is easy to show that

]2b

]v2 uvn
5

tan2u

vnvg
. ~A2!

On defining

]2b

]v2 uvn
[b2n , ~A3!

our solution, Eq.~5!, after some manipulations can be wr
ten as
er
.
.
.,

03662
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F~r,z;t !5ReH (
n51

N A 2 p

2 q22 ib2nz
AnRn~r!

3expF 2q2~z2vgt !2

vg
2~4 q41b2n

2 z2!
G

3expF2
i b2nz~z2vgt !2

2vg
2~4 q41b2n

2 z2!
G

3expF i
vn

V
~z2Vt!G J . ~A4!

Equation~A4! shows that the factors responsible for the fie
depth being finite are

En[expF 2q2~z2vgt !2

vg
2~4 q41b2n

2 z2!
G . ~A5!

Such factors, Eq.~A5!, imply a different alteration for each
vn , that is, for each term of the series~A4!. This fact makes
it somewhat difficult to evaluate the depth of field. We c
calculate the distance after which the first distortions s
appearing; let us calculate, namely, the field depth of the
term in the series~A4!, which is the term that suffers mor
distortion@cf. Eq. ~A2!#. By considering the ‘‘envelope’’ Eq.
~A4! with n51, we may choose the distance at which
width doubles as an acceptable value for the field depthZ.
One straightforwardly obtains

Z5
2A3 q2

b21
. ~A6!

Therefore, Eq.~A6! of this appendix, and Eq.~9! of the text,
allow evaluation of the distance after which the shape of
finite-energy solutions start deforming.

Let us moreover observe that, while the mentioned~math-
ematical! envelope suffers a spreading, the pulse~or pulses!
traveling inside it do not suffer any temporal spread. As th
propagate, they meet the following changes:~i! their ampli-
tude decreases~together with the envelope amplitude!; and
~ii ! more superluminal pulses are born, which propagate
side the envelope, since the width of the latter increase
time elapses~and more pulses find room inside it!.
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