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Superluminal localized solutions to Maxwell equations propagating along a waveguide:
The finite-energy case
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In a previous paper we have shown localizednevanescensolutions to Maxwell equations to exist, which
propagate without distortion with superluminal speed along normal-sized waveguides, and consist in trains of
“X-shaped” beams. Those solutions possessed infinite energy. In this paper we show how to obtain, by
contrastfinite-energy solutions, with the same localization and superluminality properties.
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I. INTRODUCTION: LOCALIZED SOLUTIONS even along a normal waveguide, where one ordinarily ex-
TO THE WAVE EQUATION pects to meet propagating, subluminal modes only. Actually,

a segment of “undersized” waveguide constitutes an evanes-

As early as 1915 Batemdri] showed that the Maxwell cence regiorf9], and evanescent waves are known to travel
equations admitbesides the ordinary solutions endowed insuperluminally[5,9-11; however, it was rather unexpected
vacuum with speed) wavelet-type solutions, endowed in that (localized waves could propagate superluminally down
vacuum with group-velocities€v <c. But Bateman’s work a normal-sized waveguide. In fact, the dispersion relation in
went practically unnoticed. Only a few authors, such asundersized guides i®?/c?— %= —K?, so that the standard
Barut et al. [2], followed such a research line; incidentally, formula v=dw/dg yields av>c group velocity[12]; by
Barutet al. constructed even a wavelet-type solution travel-contrast, in normal guides the dispersion relation becomes
ing with superluminal group velocit§3] v>c. w/c®—p*=+K?, so that it seems to yield values<c

In more recent times, however, many authors discusse@MY- Instead, in our papé¢B] we have shown that localized
the fact that al(homogeneoUswave equations admit solu- Solutions to the Maxwell equations do exist, propagating
tions with O<v <=: see, e.g., Ref4]. Most of those authors with v>C even in nor.mal waveguides; put their group-
confined themselves to investigatiteubluminal or superlu- velocity v cannot be given by the approximate formula
minal) localizednondispersive solutions in vacuum; namely, =dw/dB. (Let us recall that the group velocity is well de-

those solutions that were called “undistorted progressivécm(ad only when the pulse has a clear bump in space; but it

. . . . can be calculated by the approximate, elementary relation
waves by Courgnt and Hilbert. Among localized “solutlons, ~dw/dB only wheno as a function ofg is also clearly
the most interesting appeared to be the so-called “X-shape bumped)
waves, which—predicted to exist even by special relativity
in its extended versiof5]—had been mathematically con-
structed by Lu and Greenlef] for acoustic waves, and by
Ziolkowski et al. [6], and later Recani6], for electromag-
netism. Let us recall that such X-shaped localized solutions In Ref.[8] we construced localized solutions to the Max-
are superluminali.e., travel with a group-velocity>c in  well equations(which propagate undistorted, with superlu-
the vacuum in the electromagnetic case; and are “super-minal group velocity down aylindrical waveguide located
sonic” (i.e., travel with a speed larger than the sound speedlong thez direction for the TM (transverse magnejicase
in the medium in the acoustic case. The first authors toand for a dispersion-free medium. The case with dispersion
produce X-shaped wavesperimentallyvere Lu and Green- has been treated elsewhdrE3], as well as the case of a
leaf [7] for acoustics, Saaet al. [7] for optics, and Mugnai coaxial cablg14]. Here, let us call attention to two points,
et al. for microwaved7]. which received just a mention in R¢8], with regard to Eq.

In a recent paper of ours, which appeared in this journal(9) and Fig. 2 therein(i) those solutions consist ¢fains of
[8], we showed that solutions to the Maxwell equations exispulses(similar to the one depicted in Fig. 2 of Ré¢L)); (ii)
that displace themselves with superluminal group velocityeach of such pulses is ¥haped see our Fig. 1 below. Let us
note, incidentally, that we are referring to the electromag-
netic case, but the same would hold for all situations in
*Email address for contacts: recami@mi.infn.it which a fundamental role is played by the wave equatam

Il. THE INFINITE-ENERGY SOLUTIONS
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whereW represents the longitudinal component of the elec-
tric field E,, while N is an integer, the quantities, are the
roots of the Bessel functiork,,=\,/r and w,=K,c/siné,
while V=c/cosf. These solutions are therefore Fourier-
Bessel-type sums over different propagating modes with an-
gular frequencies, .

Let us recall the obvious circumstance that any solution
that depends oz (andt) only through the variableg=z
=Vt will be “rigidly” moving with speed V.

One can moreover notice that, in Ed), the quantityé is
an arbitrary angle: by varying it, one obtains different train
speeds and a different distance between the pulses. Actually,
our solutions propagate rigidly along the guide witluper-
luminal) group velocityV=c/cosé. In Fig. 1, we depict one
of the trains of X-shaped waves, obtained by numerical
£ (10°m) evaluation of Eq(1) for a waveguide radius=5 cm, with

0= /3 (and, therefore, group-velocity=2c). It is inter-

FIG. 1. This figure depicts one of ouinfinite total-energy  esting to mention also that the integhr determines the
localized solutions, given in Ed1). It consists, as expected, in a space-time width of the pulses: the higher tNeis, the
train of X-shaped waves; and propagates rigidly along the considsmaller the pulse “spatiotemporal” width will be. Figure 1
ered circular, normal-sized waveguide, with radius5 cm, with K55 peen obtained by choosihg=22, that is, by using the
the superluminal speed=c/cosé. [Let us recall that any solution same value oN adopted by us in Ref8] (cf., for instance,
that depends oz (andt) only through the variablg=z—Vt is Fig. 3 therein.
rigidly moving with speedv.] In this figure 9= /3 has been cho- % o ;5 emphasize that E€1) represents aultimodal(but
sen, while;=z-Vt. At last, we have adtheN:.ZZ’ that 'S, the localized propagation, as if the geometric dispersion com-
same value oN used by us in Ref[8] (cf., for instance, Fig. 3 pensated for the multimodal dispersion.
therein. We mentioned tha¥ represents the electric field compo-
. . ) o nentE,. Let us add that, by following the procedure adopted
in acoustics, geophysics, gravitational waves, eIementarxy us in Ref[8], the other eletromagnetic field components

particle physics, etit:: . . in the considered TM case can be written as
In the case of cylindrical symmetry, let us consider a me-

tallic waveguide[8] with radiusr, and use the notations oV c

=(x,y), and p=|p|, as We!l as the boundary condition Ei:ivz—cz E w—Vqu, 2
Y(p=r,z;t)=0. In the previous papdi8] we constructed n=1®n

the axisymmetric solution

-50 " -400

p (10°m)

where
v N 2 wp cVv cosd
)= ——————|Jo(K —(z=V1)|, ==,
(p,z;t) 2\ 7Zsie32 0 Jo(Knp)cog 7 (z=V1) V22~ sire
1
@ and
» H, =&V Z¥XE, . 3
18 / . . . . .
- Equation(1) allows for a physical interpretation, which

suggests a very simple way to get it. Each pulse train is a
sum of the firstN modes of our expansiotand for each\
we get a different train, at our choicewhose frequencies
have been suitably chosen as corresponding tanteesec-
"=30° - tions of the modal curvesi.e., the various branches of the
dispersion-relation with the single straight line o=V g
whose slope depends @monly; see Fig. 2. In such a case, all
the modes correspond to the sartsiperluminal phase-
velocity Vp,, it being independent of the mode indexbut,
et i when the phase velocny is m_dependent of the frequency, it
Normalized frequency rfc becomes thgroup velocity which is the velocitytout court
of the considered pulse. Let us repeat once more that we thus
FIG. 2. Dispersion curves for the symmetrical FMnodes ina  got (nonevanescehtsolutions to the Maxwell equations,
perfect cyclindrical waveguide, and location of the frequencieswhich are waves propagating undistorted along normal
whose corresponding modes have equal phase velocity. See the tewtaveguides with superluminal group velocitgyen if in

Normalized wave vector pr
5
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FIG. 3. This set of eight fig-
ures depicts one of odinite total-
&m energy localized solutions, given
@ © by Egs.(5) and (8). Indeed, they

: : show the time evolution of a finite
total-energy solution: Choosing
=2.041x10 % and §= /3 (and
normalized units there is only
one X-shaped pulse inside the
subluminal envelope: see the text.
The pulse and envelope; velocities
are given byV=c/cosé and vq
=c?/V, respectively. Théglobal
speedv of the envelope is there-
fore subluminal in the finite-
. v 00 'w o 58 . energy case, while superluminal

® ® speeds/ are met onlylocally (in-
ternally). Nevertheless, in the
present case the superluminal
speed V=c?/v, of such a
“single” pulse might be regarded
as the actual velocity of the wave.
(a)—(h) show a complete cycle of
the pulse; the first set of four fig-
ures corresponds to the time
instants t=0, t=5, t=10,
t=15x10 s, respectively,
while the (symmetrical second

> set of four figures corresponds to

o oo T o o : cm the time instantg =25, t=30, t
© @ =35, t=40x10!'s, respec-
tively. Quantityp is the radial co-
ordinate, while {=z—-Vt. We
have used, once more, the value
N=22.

o 5m o (m) 0

o) : cm p(m) i &m

normal-sized waveguides the dispersion relation for eaclmatic signals. This is at variance with the common situation
mode, i.e., for each term of our Fourier-Bessel expansion, i optical and microwave communications, when the signal
the ordinary “subluminal” one,w?/c?— B2=+K?2. Let us is usually superimposed to a carrier wave whose frequency is
repeat that thglobal velocity v (or group-velocityy=v) of ~ generally much higher than the signal bandwidth.that

the pulses corresponding to E@) is not to be evaluated by case the standard formula foy yields the correct velocity to
the ordinary formulav;~dw/dg, valid for quasimonochro- deal with (e.g., when propagation delays are stuglie@ur
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case, on the contrary, is much more reminiscent of a basavhere the weight parametqiis always the same, so that
band modulated signal, as those studied in ultrasonics: th@o is independent afi [in fact, it is Aw=2/q], and where
very concept of a carrier becomes meaningless here, as the
elementary “harmonic” components have widely different K,c
frequencies. wp=
The fact that our superluminal trains travel rigidly, down
the waveguidédi.e., with a spatial limitation only is at vari-
ance with what happens to othé&uperlumingl solutions
[15,7], which are truncated in time: the latter travel almost
rigidly only along their finite “field depth,” and then
abruptly decay.
Finally, it may be underscored that the coefficients in Eq.
(1) can be varied so as to keep the pulse spectrum inside the N
ggigéd frequency range. This point will be discussed again f(P'Z?‘):nZl f,xdw v W, (5)

" sing’

the quantity sird having a fixed but otherwise arbitrary
value. Notice that the last relation implies the wave numbers
B, of the longitudinal waves to be given, in terms of the
correspondingv,,, by B,= w,cosélc. We can construct FT-
ESs,F(p,zt), of the typé

Ill. THE FINITE-ENERGY SOLUTIONS with arbitraryN. Notice that we are not using a single Gauss-
ian weight, but a different Gaussian functiaf, for eachw,

Value. Such weight8V, are well localized around the corre-

spondingw,,, SO that one can exparifbr each value of, in

the above sumthe functionB(w) in the neighborhood of the
orrespondingw, value as follows:

solutions(1) are infinite trains of pulses, witinfinity energy.
This is not a real problentplane waves too have infinite
energy, provided that we are able to truncate them in spac
and time withount destroying their good properties. We shal
go on following the previous assumptions: what we are go-

ing to do holds, however, for both the TM and the TE case. Blw)=p(w,)+ %L‘) (w—wp)+ -+, (6)

Let usanticipatethat, in order to get finite total-energy so- dw =n

lutions (FTESS, we shall have to replace each characteristic

frequencyw, [cf. Eq. (1), or Fig. 2] by a small frequency whereB(w,)=w,cosél/c, and the further terms are neglected
band Aw centered atw,, always choosing the samkw  [since, let us repeaty w/w has been assumed to be srhall
independently ofi. In fact, since all the modes entering the Therefore, we are now facing no longer a set of phase ve-
Fourier-type expansiofil) possess the same phase velocitylocities, but the set of group velocities

Vpr=V=c/cosh, each small bandwidth packet associated

with o, will possesghe same group velocity,= c2/vph, SO 1 4B

that we shall have as a result a wave wheseelopédravels o=

with the subluminalgroup velocityv,. Howevey inside that
subluminal envelope, one or mopalseswill be traveling
with the dual (superluminal speedV=02/ug. Such well- Which result to beéndependentf n, all of them possessing
localized peaks will have nothing to do with the ordinary therefore the same value

(sinusoidal carrier wave, and will be regarded as constitut-

Ugn do o,

ing the relevant wave. When integrating each term of expan- Ugn=Ug=C COSH. (7)
sion (1) over its corresponding frequency band, one may
choose, e.g., Gaussiam spectra. By performing the integration in Ed5), we eventually ob-

Before going on, let us mention that previous work relatedtain
to FTESs can be found—as far as we know—only in Refs.

[16,14,17. J (z—vgt)?
More formally, let us consider our ordinary solutions for a Flp,z;t)= Fex T Tkt V(p,z—Vt), (8)
metallic waveguide, written in the form g
Un(p,z;t)=ARp(p)cos B(w)z— wt], whereW (p,z— V1) is any pulse train given by Eql); and

we had recourse to the identity
where coefficientd\, and functionsR,, are given by the co-
efficients and the(transversg functions entering Eq(1);

namely, When integrating ovew from — to +, also the nonphysical
(noncausal components that travel backwards in space could con-
tribute [17,14). But their actual contribution is totally negligible,
since the weight function®/,, are strongly localized in the vicinity

of the w,, values(which are all positive; see, e.g., Fig). 2n any

A

Ao R(p)=Jo(K.ep), K.=2D
n r25|r]20\]§()\n) n(P) ‘JO( np) n r

Then, let us adopt the spectral functions case, one could integrate from O 4oat the price of increasing a
little the mathematical complexity: we are preferring the present
W,=exfd — g%(w—w,)?], (4)  formalism for simplicity’s sake.
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% solutions. An interesting point is that we can choose, how-
j df exd —g*f?Jcog f(z—vgt)/vg] ever, the envelope length so that it contaordy one (X-

o shaped wavepeak. Even if thgglobal) speed of the enve-
lope is subluminal in the finite-energy case, while
superluminal speeds are met only “internally,” nevertheless
in the present case the superluminal sp\eed:zlvg of such

| “single” pulse might be regarded as the actloaal veloc-

ity of the wave. In order to have just one peak inside the
envelope, the envelope length is to be chosen smaller than
the distance between two successive peaks offitifanite

\/; [{ (Z_Ugt)z
=——exXg — ——|.

2
q 4q°vg

It is rather interesting that our FTESs are related to th
X-shaped waves, since E() has been written in the form
(8), where the function?' (p,z— V1) is any one of our previ-
ous solutions in Eq(l) above, at our choice. total-energy train (1).

Let us notice that our finite-energy solutions, E@8.and ) . .
(8), have got a finite depth of fiel&. To evaluateZ, one has Th'e amplltgde O.f S.UCh a single X-shaped pL'MIEEhI'Ch
remains confined inside the envelope boungdigst in-

to consider also the second-order term in the Taylor eXloanéreases and afterwards decreases, while traveling, till when
sion, Eq.(6), of quantity B(w), and then estimate the dis- ’ ’ 9,

tance after which the solutions start deforming. The relevankt pTaCt'Ca”y d|sappe§irs. As soon as the _con5|dered pulse
calculations appear in the Appendix. One finds that vanishes on the righti.e., under the right tail of the enve-

lope), a second pulse starts to be created on the left, and so

2\/§q2 on [from Eq. (8) it is clear, in fact, that our finite-energy
~ , 9) solutions are nothing but afinfinite-energy solution of the
Ba1 type in Eq.(1), multiplied by a Gaussian functign

We illustrate such behavidagain withN=22) in Fig. 3,
namely, in the set of eight figures from FigaBto Fig. 3h).
We have found a similar behavior in R¢1L3], and depicted
= i it in the last set of figures of that reference, when studying
o, W1Ug the case of a coaxial guide.
Let us moreover remark that similar considerations could
be extended to all the situations where a waveguide supports
IV. CONCLUSIONS several modes. Tests at microwave frequencies, for instance,

In conclusion, looking fofinite total-energy solutions, we should be rather easy to perform; by contrast, experiments in

have found a Gaussian envelope that travels wisilslumi- ~ the optical domain are made difficult, at present, by the lim-
nal velocity v =c cosé. However, inside it, we have got a ited extension of the spectral windows corresponding to not

train of pulses traveling superluminallywith V=c?y  t00 large attenuations. We shall discuss this point elsewhere.

=c/cosf). And we can control the number of pulses inside It is rather interesting that our FTESs are related to the
the envelope just by varying the value @f X-shaped waves, since in E@) the function¥(p,z—Vt)

We have actually shown that, if we choose thevalues ~Can be any one of our previous solutions in Ex).above, at
as in Fig. 2, all the small-bandwidth packets centered at th@ur choice. _
w,’s will have the same phase velociy>c, and therefore  Let us finally recall that such superluminal beams—even
the same group velocityvs<c (since for metalic I the case of (infinite-energy trains of undistorted
waveguides the quantitidsﬁ:wﬁlcz—ﬁz are constant for pulses—don_ot |mply cau;ahty proble_ms, both in principle
each mode, and =dw/dB, so that it ivagzcz). This [5,12], and in consideration Qf the important fact that all
means that the envelope of solutidB)—(8) moves with _Bessel beams, and supt_erposmons of them, are generated by
slower-than-light speed, the envelope leRghf depending INterference among ordinaryc{speed waves, so as to be
on the choser w, and being therefore proportional ¢ . apparently gncapable of carrying .superlummal mfo_rmatlpn
However, inside such an envelope, one has a traifiXef [15]—even if some erate is still in progress on thls point
shapedl pulses—having nothing to do with the ordinary car- too. Even more, the flnlte—epergy splutlons are qbtamed, gen-
rier wave’—traveling with the superluminal spead erally speaking, by truncating in time the mentioned local-

According to the standard theory of waveguidg], the ized waves; the finite-energy solutions, therefore, keep local-
energy and signal propagation velocities coincide with thd2€d only along a finite depth of field: namely, as long as they

group velocity (i.e., with the envelope spegdwhich has ~are fed by the incoming, interferinrdinary waves. It is -
been seen to be subluminal. From this point of view—even ifrot without meaning, actually, that all the solutions gotten in

a lively debate is still in progre¢4.9], in connection with the ~thiS Paper, as well as in previous papers, have been obtained

rather delicate and general questions just mentioned—ng" the blasis gf the I\(;Iaxwerl]l_equ;tio(m oflthe_V\r/]avrfz efquz(ij-
particular problem is met, therefore, with our finite-energyi©" ©nly, and can do nothing but comply with the funda-

mental postulates of special relativity,12].

where

_ B tarfe
Ba=7"3
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APPENDIX L
Estimating the field depth of the finite-energy solutions Equation(A4) shows that the factors responsible for the field
As announced at the end of Sec. Ill, we show in thisdepth being finite are
appendix how to evaluate the field depth of our finite-energy —g2(z— v t)?
solutions. Let us add the second-order term in &}.which E,=ex ﬁ . (A5)
is the Taylor expansioitfor each value ofn) of function vg(4 0™+ B2nZ’)

B(w) in the neighborhood of the correspondiag, Such factors, Eq(A5), imply a different alteration for each

B 1428 wy, that is, for each term of the serié&4). This fact makes
Blw)=B(w)+ —|, (0—w,)+= —>| (0—w,)? it somewhat difficult to evaluate the depth of field. We can
" dw | "2 gw? © A calculate the distance after which the first distortions start

appearing; let us calculate, namely, the field depth of the first
. (A1) term in the seriesA4), which is the term that suffers more
distortion[cf. Eq. (A2)]. By considering the “envelope” Eq.
(A4) with n=1, we may choose the distance at which its
where it is easy to show that width doubles as an acceptable value for the field d&pth
One straightforwardly obtains

PB tarfe 24392
= Z= . A6
5(1)2 |“’n wnvg . (AZ) BZl ( )
Therefore, Eq(A6) of this appendix, and Eq9) of the text,
allow evaluation of the distance after which the shape of the
finite-energy solutions start deforming.
Let us moreover observe that, while the mentiofradth-

5 ematica) envelope suffers a spreading, the pulsepulse$
a_[z| =3, (A3) traveling inside it do not suffer any temporal spread. As they
dw* “n " propagate, they meet the following changeéstheir ampli-

tude decreasegogether with the envelope amplitudend

(if) more superluminal pulses are born, which propagate in-
our solution, Eq(5), after some manipulations can be writ- side the envelope, since the width of the latter increases as
ten as time elapsegand more pulses find room inside. it

+ ..
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